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Abstract—As quantum technologies gain relevance across sci-
entific and industrial domains, accessible educational frameworks
are critical to preparing the next generation of quantum-literate
learners. Traditional instruction often fails to engage diverse
audiences or convey abstract quantum concepts intuitively. This
paper introduces a novel Al-assisted learning architecture cen-
tered on the Embodied Language Model (ELM) - a hybrid
approach that integrates Reinforcement Learning (RL) and
Large Language Models (LLMs) — to address key challenges
in quantum education through adaptive, game-based learning.

We evaluate this framework in Qookies, a story-driven point-
and-click adventure featuring the Al-controlled non-player char-
acter (NPC) Yuki as co-learner. Yuki combines an RL-based
action model with an LLM which uniquely, like the player,
begins with limited domain knowledge, acquiring understanding
incrementally through shared game-play. The interaction design
emphasizes observational learning, instruction, and dialogue: the
player prompts Yuki to act, requests assistance, or engages
in open conversation, while Yuki defers to the player when
uncertain, suggests interactions with objects outside her reach,
or explains quantum concepts contextually.

Key contributions include the RL model’s runtime learning
of object concepts through game-play observation, the LLM’s
prompt accumulation by narrative progression and user dialogue,
and the interface design enabling communication between RL
and LLM models, collectively mirroring the player’s learning
progress. Our architecture integrates these complementary pro-
cesses to enable adaptive, personalized learning through collab-
orative exploration.

Evaluation results from related studies suggest that the
game enhances learners’ conceptual understanding of quantum
phenomena, whereas the grounding RL component effectively
reduces intrinsic cognitive load, simplifying the acquisition of
complex concepts and promoting lasting learning through con-
textualized game-play. Overall, our framework offers a scal-
able, adaptive model for Al-assisted personalized education,
contributes to hybrid AI architectures in educational technology,
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and suggests potential for domain transfer across STEM learning
environments.

Index Terms—Game-based Learning, Al-assisted Education,
Reinforcement Learning, Large Language Models, Personalized
Learning, Educational Technology, Embodied Language Model

I. INTRODUCTION AND BACKGROUND

There is a rapidly growing need for broad-based quantum
literacy across science and education, as quantum technolo-
gies move from laboratories into industry and engineering
workflows. Quantum concepts — superposition, entanglement,
measurement — are abstract and counterintuitive, which poses
a substantial barrier for learners without a strong mathematical
background. Traditional lecture-based approaches often fail to
provide the embodied intuition or contextualized experience
learners need to form robust and sustainable mental models of
these ideas.

Game-based learning offers a promising path forward by
embedding abstract concepts in interactive tasks and narratives
that provide situated, motivational contexts for exploration.
Games can encourage to engage with complex topics in the
first place and scaffold complex ideas through progressive,
interactive challenges while providing feedback continuously;
they thereby support active learning and reflection [1]. At the
same time, modern Al systems (particularly LLMs and RL
agents) enable novel adaptive and social forms of support —
e.g., on-demand explanations, model demonstrations, and co-
play — that can personalize the learning trajectory in real time.
Thus, integrating game mechanics with Al affords an opportu-
nity to design educational experiences that are simultaneously
motivating, scaffolded, and adaptive.

When designing complex learning content, considerations
regarding cognitive load are of crucial importance. Cognitive
Load Theory argues that instructional designs must manage
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Fig. 1. Conceptual positioning of the GALaQSci project, illustrating the
convergence of quantum education, game-based learning, and Al-assisted co-
learning through the NPC Yuki.

intrinsic load (inherent difficulty of the subject matter), reduce
extraneous load (unnecessary cognitive burden due to poor in-
structional design), and support germane load (effort required
for schema construction and automation) [2]. Measuring and
optimizing these loads is essential when introducing Al-
mediated supports and new interaction patterns so that Al
assistance reduces rather than adds to learners’ processing bur-
den. Empirical instruments for measuring intrinsic, extraneous
and germane load are available and widely used in educational
research.

A. The GALaQSci Project

The aim of the GALaQSci (Game-based and Al-assisted
learning about Quantum Science) project is to develop a
game that offers a low-threshold introduction to the subject of
quantum physics and quantum technologies. Previously, Seskir
et al.[3] highlighted the value of quantum technology games
for outreach and educational purposes. One requirement for
the level design in GALaQSci is that the puzzles should be
solvable without any prior knowledge of physics or mathe-
matics. At the same time, the game is intended to appeal to a
broad target group, and should also be interesting for people
who may already have some background knowledge and are
interested in learning more. The addition of an Al-controlled
non-player character (NPC) named ‘Yuki’ is motivated by the
ambition to enable a collaborative and personalized learning
experience in which the player receives appropriate support.
Rather than an all-knowing AI, Yuki is designed as a co-
player with whom a game world of quantum phenomena can
be discovered in a playful manner. Taken together, GALaQSci
is at the intersection of quantum education, game-based learn-
ing and Al assistance to promote collaborative, personalized
learning (see Fig. 1).

B. Related Work

Yannakakis and Togelius [4] provide a comprehensive foun-
dation on artificial intelligence methods in games, emphasizing
how adaptive agents, procedural content generation, and player

modeling can foster engagement and learning, principles that
directly inform the design of our Al-assisted educational
framework.

Schrodt outlines neurocomputational mechanisms of action
understanding based on predictive coding and embodied simu-
lation, offering a theoretical foundation for the co-learning and
embodied cognition principles that underpin our approach [5].
The work also demonstrates how distinct (neural) modules
with specialized functions can recursively communicate and
synchronize to represent actions across multiple modalities,
supporting coherent learning and embodied action simulation.

Building on the cognitive modeling paradigm, Schrodt et
al. demonstrated that games (i.e., Super Mario) can serve
as an effective testbed for studying adaptive cognitive ar-
chitectures and social interaction in embodied agents. Their
work introduced RL models capable of event-based reasoning,
cooperative problem solving, and incremental learning through
dialogue with the player as well as autonomous or instructed
game-play [5], [6], [7], [8]. Moreover, the approach presented
here also incorporates the relevant content- and function-based
principles of collaborative knowledge construction pointed out
by Fischer et al. (2002) [9]: (1) externalization and elicita-
tion of task-relevant knowledge, as well as (2) conflict- and
integration-oriented consensus building. To account for this,
the Al model learns in parallel to the user by their actions and
is able to communicate the task-relevant knowledge with the
aim to find a joint solution.

Building on this line of research, our proposed Embodied
Language Model (ELM) extends such cognitively inspired
architectures by integrating Reinforcement Learning and Large
Language Models into a unified, interactive framework.

II. AI-ASSISTED LEARNING ARCHITECTURE

This section presents the conceptual architecture underlying
the Al-assisted learning framework used in Qookies. It details
how Reinforcement Learning and Large Language Models are
integrated into a unified Embodied Language Model (ELM)
that supports adaptive, grounded co-learning between the
player and the NPC.

Note that while major components of the ELM have been
implemented and evaluated within the Qookies environment,
the architecture depicted here represents a full, theoretical de-
sign. It illustrates the complete set of components, interactions,
and capabilities envisioned for the system, serving as a guiding
blueprint for ongoing development and refinement in this and
other applications.

A. Requirements for Enabling Co-learning Experience

To enable a co-learning experience, Yuki must start with
limited domain knowledge so that its learning trajectory is
parallel to the player’s. Joint learning is particularly effective
here, as it partially relieves the player of the burden of
remembering what they have already learned, allowing them
to concentrate on new content. At the same time, it does not
raise the expectation that the AI knows everything, which
may hinder independent and active thinking. The Al is de-
signed to acquire knowledge incrementally via three channels
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Fig. 2. ELM architecture flowchart. The Environment Perception module tracks object states, game events, and player inputs to maintain the AI’s situational
awareness. Perception is processed by both the LLM and RL modules by collecting prompts and learning object models. The embodiment interface mediates
between RL and LLM representations to enable a range of environmental interaction capabilities for the Al

— observation of player actions, active interaction with the
environment (instructed, proactive or explorative), and natural-
language dialogue. Crucially, the AI’s actions and explanations
must remain tied to the game’s affordances to effectively avoid
hallucinations and ensure consistent, contextually grounded
behavior. These requirements — novice initial state, incremental
learning, and tight perceptual-action grounding — motivate the
modular Al architecture described next.

B. Concept and System Overview

We propose a hybrid architecture that couples a large
language model (LLM) with a model-based Reinforcement
Learning (MB-RL) controller through an embodiment in-
terface to form an Embodied Language Model (ELM, see
Figure 2). The LLM provides flexible natural language un-
derstanding and generation (explanations, dialog, instruction
parsing, and prompt accumulation), while the RL component
supplies situated, sensorimotor interaction and online concept
acquisition through observation and action. The embodiment
interface mediates between symbolic/linguistic representations
(prompts, dialogue state) and grounded, game-state obser-
vations (object states, affordances, reachable actions). This
bidirectional grounding is intended to reduce hallucination
by constraining language outputs to the current embodied
context, while preserving the LLM’s strengths for explanation,
narrative continuity, and creativity.

C. Architecture Modules, Interactions and Capabilities

The architecture is organized into the following modules:

Environment Perception: The Environment Perception mod-
ule continuously monitors and encodes the current state of the
game world, including object states, state changes, game and
story events, and player inputs. It provides both Al modules —
the LLM and RL components — with an up-to-date situational
representation that grounds decision-making, dialogue, and
action planning in the observable game world.

LIM Module: The LLM is responsible for turn-taking in
dialogue, explanation generation, and high-level planning sug-
gestions. In our current prototype of Qookies we use a state-
of-the-art instruction-tuned model (Llama 3.1 70B [10]). The
model is strongly prompted for its role in the narrative of the
game — Yuki stays very much on the topic of Quantum Physics.
Furthermore, in order to provide suitable help, the prompt
contains a description about the current tasks. The LLM is
also prompted about the currently present objects and changes
in their state to increase the situational awareness. All story
dialogues and conversation with the player, as well as game
events, are accumulated in the prompt to preserve narrative
continuity across levels, and also across sessions. Besides
the strong prompt itself, a separate moderation system filters
out harmful inputs. The model is also set up for supporting
multiple languages.

MB-RL Module: The MB-RL module learns object-centered
predictive models by decomposing the environment perception
(perceptual inference). These decomposed models are learned
and integrated via one-shot learning, enabling fast knowledge
acquisition. Perceptual generalization can be achieved via
predefined or neural mini-generalizers. Further, the models are
sparsely connected and structured in a way that allows asymp-
totically efficient re-combination. This enables the simulation
of and planning towards partial world states beyond the prior
observations, enabling combinatory, one-shot generalization.
A sequence of actions is then selected based on the maximum
overall outcome in these partially simulated world states.
However, real-time learning from scratch naturally means that
the RL model may fail when creating an action plan. This
is entirely intentional and results from the fact that both
the Al and the player operate on an incomplete level of
experience. However, classic RL theory and practice guide this
component’s design: MB-RL affords sample efficiency and
the capacity to plan under uncertainty, which are important



to enable a co-learning experience, where e.g. pre-training of
a model-free approach would not be feasible.

Embodiment Interface: The bidirectional embodiment inter-
face serves two complementary roles. First, it converts MB-RL
action plans — sequences of actions executed on specific object
identities — into an intermediate, structured representation that
the LLM can interpret and render in natural language. Second,
it translates language inputs from the user or other game
characters into goals, state updates, or perceptual information
that can be processed by the MB-RL module, effectively
grounding high-level instructions in the game environment.

If MB RL is unable to generate a valid action plan, the LLM
can produce purely prompt-driven replies, which may include
more creative suggestions but are less tightly coupled to the
game mechanics. In some cases, MB-RL failure is intentional
and integrated into game-play as a design feature.

Environmental Interaction Capabilities: This module en-
ables the AI to actively engage with both the player and
the game world by translating internal representations into
concrete behaviors. It allows the NPC to answer questions and
chat, manipulate objects directly, suggest actions to the player,
prompt the player to interact with otherwise inaccessible
elements, proactively provide guidance, and execute instructed
goals. By integrating outputs from both the LLM and MB-
RL modules through the embodiment interface, this com-
ponent operationalizes the co-learning experience, ensuring
that the AI’s actions and communications remain contextually
grounded, responsive, and pedagogically effective.

The game- and learning environment Qookies and the
interaction patterns resulting from this Al design are described
in the following Sections.

III. GAME-BASED LEARNING ENVIRONMENT: QOOKIES —
A QUANTUM QUEST

This section introduces the Qookies game environment,
where the ELM architecture is embedded and evaluated. It
explains how the game’s narrative, puzzle mechanics, and
Al-driven interactions jointly operationalize quantum concepts
through hands-on, story-based learning.

A. Educational and narrative design

Qookies — A Quantum Quest is a story-driven point-and-
click adventure that embeds quantum learning objectives in
puzzle mechanics and narrative progression. Each level com-
bines escape-room style challenges with small, scaffolded
experiments that operationalize key quantum concepts (e.g.,
qubits, superposition, entanglement) as well as illustrative phe-
nomena such as polarization and fluorescence via manipulable
game elements. The design targets secondary-school and early-
university learners with levels that progress in conceptual
complexity while supporting diverse entry points through
optional hints and demonstrable NPC actions.

Qookies is being developed for mobile platforms (Android
and i0S) with an intended release window in 2026, and is
part of the GALaQSci initiative to broaden access to quantum
topics through playful, Al-assisted experiences.

In Qookies, the Al-co-player Yuki is controlled by our
ELM model, and is designed to inhabit an epistemic state
that parallels a novice learner: limited initial knowledge,
explicit uncertainty markers, and capacity for both action
and language. This deliberate symmetry, with the AI-NPC
acting as a co-learner rather than a teacher, is intended to
create pedagogical situations in which players engage in joint
problem-solving and reflection. The NPC’s behavior provides
a visible model of learning dynamics, allowing players to
observe, compare, and adapt strategies collaboratively within
the game environment.

Note that the ELM architecture just as the Qookies game
itself are currently not fully implemented. Thus, not all of the
capabilities of the theoretical design shown in Section II are
evaluated here.

B. Player—NPC Interaction Patterns and Learning Dynamics

The interactions between the player and Yuki illustrate the
collaborative learning dynamics supported by the AI-NPC.
In Figure 3, the player directs Yuki to perform the next
steps in the level, triggering RL-based inference that results
in concrete actions on objects, such as placing levers and
setting their states, which progress the game and scaffold
the introduction of quantum concepts. Figure 4 shows a free-
form chat interaction, where Yuki responds to player questions
while staying focused on quantum science, demonstrating the
LLM’s role in contextual dialogue. Figure 5 highlights the
interplay between RL and LLM: when the player asks for
a hint, RL proposes an action plan if possible, which is
verbalized by the LLM; if RL cannot generate a plan, the
LLM provides a creative, prompt-driven response, maintaining
engagement. Finally, Figure 6 depicts a situation where the
Al recognizes that the player must act to achieve a goal,
verbalizing the plan via the LLM to coordinate joint problem-
solving. Together, these examples illustrate how observation,
dialogue, and guided action combine to support a co-learning
experience.

Fig. 3. Interaction example 1: The player asks Yuki to perform the next steps
in the level. This triggers RL model inference, which in this case results in
levers being taken from the inventory, placed in item slots, and their states
(on/off) being set correctly. This causes the letters ‘B’, "I’ and ‘T to light up
on monitors, completing the level and preparing the player for the next level,
which is about Qubits and allegorically introduces levers that are on, off or
both at the same time.



Fig. 4. Interaction example 2: The player is able to freely chat with Yuki
about anything. Yuki is strongly prompted to discuss and stay on the topic of
quantum science. When asked a general question about Einstein’s relation to
quantum mechanics, Yuki responds accordingly.

Inventar

Fig. 5. Interaction example 3: The player asks for a hint (left), which
triggers RL inference. If the RL model is able to find a rewarding sequence
of actions based on its incomplete knowledge, the resulting action plan is
converted by the Embodiment Interface into an intermediate language, which
is then interpreted by the language model and converted into natural language
(middle). If RL inference is unable to simulate rewards, the LLM inference
is triggered directly and creates a more creative, but less grounded response
based on the prompt history and level-dependent task description.

Fig. 6. Interaction example 4: In this situation, Yuki has to turn on a laser to
solve the level. However, the laser is behind a locked door in another room,
where the player is. Being asked to act in the current situation, RL infers a
plan that involves actions of the player. Plan verbalization via the LLM results
in Yuki asking the player to turn on the laser.

IV. EVALUATIONS

To assess the educational impact of the proposed framework,
an empirical study was conducted to examine how different Al
configurations affect learning outcomes, cognitive load, and
engagement in Qookies. This section summarizes the study
design, expected learning mechanisms, and key results.

A. Expected Outcomes

Based on the game design and the ELM architecture, we
anticipate a set of complementary educational benefits. Game-
based learning, through narrative, puzzles, and progressive
scaffolding, is expected to increase engagement and provide
stronger contextual anchors for abstract quantum concepts.
Shared and cooperative gameplay with an Al co-learner should
foster social presence, attachment, and motivation, support-
ing reflection and collaborative strategy development. The
co-learning design, in which both player and NPC acquire
knowledge incrementally, aims to encourage active partici-
pation and deeper processing. Context-aware dialogue and
prompt accumulation are intended to produce personalized,
narrative-coherent support, while the tight integration of Al
and game mechanics ensures that learning is closely coupled
with play, minimizing risks of out-of-context information
(hallucinations).

It is important to note that these anticipated effects span
multiple cognitive, motivational, and social dimensions and
cannot be fully investigated simultaneously. For the present
study, we focus primarily on measures of conceptual un-
derstanding and cognitive load as broad, general indicators
of the game’s educational impact. These markers provide an
initial, tractable means to assess whether the design supports
meaningful learning outcomes, while leaving more detailed
investigations of motivation, collaboration, and personalization
for future work.

B. Results

To evaluate the educational impact of the Al design, Wer-
mann et al. [11] (manuscript in preparation) conducted an
extensive user study with over 150 participants, divided into
three experimental groups. In the control group, participants
interacted with the NPC Yuki only in a passive manner: Yuki
provided background story and level objectives but offered
no additional support. In the second group, participants could
communicate with Yuki via text-based dialogue powered by a
Large Language Model (LLM), allowing them to ask questions
about puzzles, quantum concepts, or the NPC itself. Finally,
in the third group, participants engaged with the Embodied
Language Model (ELM), which combined the LLM dialogue
capability with reinforcement-learning-driven demonstrations
and assistance: Yuki could both chat and actively manipulate
game objects to illustrate solutions, providing multimodal, co-
learning support that mirrored the player’s problem-solving
and learning process.

The analyses indicate a robust game effect: There was
a significant gain in conceptual understanding scores in a
questionnaire that was completed once before and once after



playing Qookies across all groups, which is consistent with
learning through game-play.

Intrinsic Cognitive Load (ICL) reflects the mental effort
required to process complex information, particularly when
multiple interdependent elements must be integrated. Wermann
et al.’s results demonstrate that learning with the Embodied
Language Model (ELM) is measurably easier than with a
text-only LLM: participants in the ELM condition experienced
a significant reduction in ICL compared to those interacting
with the LLM alone. This finding highlights the educational
advantage of grounding language models in embodied, ac-
tionable experiences, showing that coupling dialogue with
demonstrable interaction can make complex concepts more
cognitively accessible and reduce barriers to effective learning.

Further methodological details, the complete analysis, and
full results will be provided in the forthcoming article [11].

V. DISCUSSION AND FUTURE WORK

Quantum literacy is an urgent educational priority as quan-
tum technologies move from research labs into classrooms
and industry. Because of the abstract and counterintuitive
nature of core quantum concepts, effective teaching must
ground ideas in manipulable, perceptually rich experience.
Combining game-based learning with adaptive AI support
offers a promising route to make these ideas accessible to
younger learners and to spark sustained interest in STEM.
Our hybrid Embodied Language Model (ELM) leverages the
complementary strengths of LLMs (flexible, contextualized
dialogue; narrative continuity) and MB-RL (situated planning;
demonstrable action) to create a co-learning partner that mod-
els and supports novice reasoning.

Early empirical signals indicate that the ELM design pro-
duces measurable pedagogical benefits compared with text-
only LLM support [11]. In particular, the ELM condition
showed a statistically significant reduction in intrinsic cogni-
tive load relative to an LLM-only condition, while conceptual-
understanding gains were observed across groups. These
outcomes suggest that coupling dialogue with embodied,
demonstrable interaction makes complex material more cogni-
tively accessible. Mechanistically, we argue this effect arises
from two interacting properties of the architecture: embodied
demonstrations and tightly grounded language. Demonstra-
tions externalize procedural steps and perceptual constraints,
thereby reducing working-memory demands during problem
solving; concurrently, the embodiment interface constrains
LLM outputs to current affordances and structured MB-
RL observations, which reduces out-of-context or speculative
language. Together these mechanisms both ease moment-to-
moment processing and improve the pedagogical relevance of
Al-generated explanations.

Beyond these immediate learning gains, the architecture
addresses a major challenge in educational Al — reliability. By
translating MB-RL action plans into structured intermediate
representations and returning grounded perceptual summaries
to the LLM, the embodiment interface effectively anchors
generative output in the game’s current affordances and state,

ensuring that explanations remain accurate, relevant, and ver-
ifiable.

While these findings are encouraging, they represent early
signals. The current prototype of Qookies focuses on broad
outcome markers such as conceptual understanding and cog-
nitive load; disentangling effects on motivation, engagement,
and reflection will require targeted follow-up studies.

Future work will extend this foundation in several direc-
tions: (1) studying how narrative framing and storytelling
influence learning and engagement; (2) developing an AR
mode to enhance embodied interaction; (3) integrating more
proactive and context-sensitive Al behaviors for smoother
gameplay support; and (4) adapting the ELM design pattern
to other STEM domains such as chemistry labs, circuits, and
systems biology.

REFERENCES

[1] D. G. Oblinger, “The next generation of educational
engagement,” Journal of interactive media in education,
vol. 2004, no. 1, pp. 10-10, 2004.

[2] J. Sweller, “Cognitive load during problem solving:
Effects on learning,” Cognitive Science, vol. 12, no. 2,
pp. 257-285, 1988, Classic Cognitive Load Theory
paper. DOL: 10.1207/s15516709cog1202_4.

[3] Z. C. Seskir et al., “Quantum games and interactive
tools for quantum technologies outreach and educa-
tion,” Optical Engineering, vol. 61, no. 8, pp. 081 809—
081 809, 2022.

[4] G. N. Yannakakis and J. Togelius, Artificial Intelligence
and Games. Cham: Springer, 2018, Textbook on Al
techniques for games.

[S] FE. Schrodt, “Neurocomputational principles of action
understanding: Perceptual inference, predictive coding,
and embodied simulation,” Ph.D. dissertation, Disserta-
tion, Tiibingen, Universitéit Tiibingen, 2018.

[6] F. Schrodt, J. Lohmann, and M. V. Butz, “Mario
becomes social,” in Video Proceedings of the 30th
Conference of the Association for the Advancement of
Artificial Intelligence, 2016.

[71 F. Schrodt, Y. Rohm, and M. V. Butz, “An event-
schematic, cooperative, cognitive architecture plays su-
per mario,” Cognitive Robot Architectures, vol. 10,
pp. 10-15, 2017.

[8] F. Schrodt, J. Kneissler, S. Ehrenfeld, and M. V. Butz,
“Mario becomes cognitive,” Topics in cognitive science,
vol. 9, no. 2, pp. 343-373, 2017.

[9] F. Fischer, J. Bruhn, C. Grisel, and H. Mandl, “Foster-
ing collaborative knowledge construction with visual-
ization tools,” Learning and instruction, vol. 12, no. 2,
pp- 213-232, 2002.

[10] Meta Al, Introducing llama 3.1: Our most capable
models to date, https://ai.meta.com/blog/meta-llama-3-
1/, Blog / model announcement. Accessed: 2025-10-14,
Jul. 2024.

[11] C. Wermann et al., “Interaction with ai-controlled non-

player-characters in serious games,” unpublished, 2025.


https://doi.org/10.1207/s15516709cog1202_4
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/

	Introduction and Background
	The GALaQSci Project
	Related Work

	AI-Assisted Learning Architecture
	Requirements for Enabling Co-learning Experience
	Concept and System Overview
	Architecture Modules, Interactions and Capabilities

	Game-Based Learning Environment: Qookies – A Quantum Quest
	Educational and narrative design
	Player–NPC Interaction Patterns and Learning Dynamics

	Evaluations
	Expected Outcomes
	Results

	Discussion and Future Work

