Can quantum machine learning really outperform classical models on real-world datasets?

Background

As a research community are we all cherry picking?

HLRS

Certainly many QML studies claim a quantum advantage.
 Yet it can be hard to achieve in practice.

Classical ML is hard to beat

- Pennylane meta-study was disappointing for QML proponents.
 - Reproduced representative assortment of QML models from literature.
 - "overall, out-of-the-box classical machine learning models outperform the quantum classifiers…
 - removing entanglement from a quantum model often results in as good or better performance, suggesting that "quantumness" may not be the crucial ingredient."

hyperparameter optimisation with >200,000 models trained

simulating circuits up to 18 qubits

software package available at https://github.com/XanaduAI/qml-benchmarks

"Quantum Data"

HLRS

 Try to explore more broadly than swapping classical models for quantum equivalents.

16-bit (half)

08.10.2025

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

 $1 \times 2^{1} \times 1.571 = 3.141$

= 0x4248

Power of data in quantum machine learning

Paper Ideas

- Classically hard problems can still be competitive with quantum models when one considers the affect of the available data.
- Projected Quantum Kernel (PQK) can provide a small advantage.
- Methodology for constructing artificial quantum advantages.

$$K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

$$k^{\mathcal{Q}}(x_i, x_j) = |\langle x_i | x_j \rangle|^2.$$

$$k^{\mathrm{PQ}}(x_i, x_j) = \exp\left(-\gamma \sum_k \sum_{P \in \{X, Y, Z\}} \left(\mathrm{Tr}(P\rho(x_i)_k) - \mathrm{Tr}(P\rho(x_j)_k)\right)^2\right),$$

Projected Quantum Kernel/Quantum Shadow

- PQK Intuition "Best of both worlds":
 - Quantum feature space captures richer representations.
 - Alleviates problems associated with large Hilbert spaces e.g. all the inner products vanishing because the space is too big.

Geometric Difference

- Can construct a quantity g_{cq} which expresses alignment between two kernel-induced feature spaces (original dataset and PQK features).
- Embeddings with higher g_{cq} tend to show signs of quantum model outperforming.
- Can also artificially maximise gcq by a relabelling procedure.
 - Tool for screening embeddings.

Partial paper reproduction

Dataset

HLRS

[1.234, 2.345]

Vector of length: DATASET_DIM = N_QUBITS - 1

N_TRAIN:int =100, N_TEST: int=20 (Small but observed trends remain same for The larger scale tests which were run)

Problem setup

Common QML Setup

Classical:

х у

Classical NN

Quantum:

Χ

Quantum NN

Whats changes:

Setup here

Classical:

х у

Classical NN

Quantum:

x_pqk y

Classical NN

Whats changes: data

encoding.

Problem setup

```
HLRS
```

```
def __init__(self, DATASET_DIM):
    super().__init__()
    self.fc1 = torch.nn.Linear(DATASET_DIM, 128)
    self.fc2 = torch.nn.Linear(128, 64)
    self.fc3 = torch.nn.Linear(64, 16)
    self.fc4 = torch.nn.Linear(16, 2)
    self.relu = torch.nn.ReLU()
    self.dataset_dim = DATASET_DIM
```

```
def __init__(self, N_QUBITS):
    super().__init__()
    self.fc1 = torch.nn.Linear(3*N_QUBITS, 128)
    self.fc2 = torch.nn.Linear(128, 64)
    self.fc3 = torch.nn.Linear(64, 16)
    self.fc4 = torch.nn.Linear(16, 2)
    self.relu = torch.nn.ReLU()
    self.n_qubits = N_QUBITS
```

Partial reproduction of power of data paper

"Quantum Advantage"

- TensorFlow tutorial from Google uses PQK circuits rather than full kernels. https://www.tensorflow.org/quantum/tutorials/quantum/data
- We reproduced their tutorial in PennyLane.
- "Quantum advantage" is artificially constructed.

Quantum Advantage is hard to find

Dataset (Q, E2)

n (system size)

Hard to get a real quantum advantage using quantum shadows and pure classification.

Regression (KRR) as they used kernels.

O.25 0.20 0.10 0.05 0.00 0.00 Best Classical ML 0.10 Drediction 0.00 20 20 n (system size) n (system size) Dataset (Q, E3) Prediction error (classification)
0 0 0 0 0 0 ction error (regression) 0.20 0.15 0.10 0.05 Dataset (C) 0.00 10 20 20

Dataset (Q, E1)

PQ (E2)

PQ (E3)

0.25 0.20 0.15

Can't reproduce for standard classification

(b)

n (system size)

Useful vs useless advantage

Useful vs useless advantage

"The recent success... [showing] that quantum computers can sample from probability distributions that are exponentially difficult to sample from classically...

If these distributions were to coincide with real-world distributions..."

Pragmatic definition: Performs better

- on a useful dataset.
- On a NISQ device
- At a large problem size.

How useful is proving you can sample XEB circuits better?

Relabelling OR rigging the data

HLRIS

Before

Classical:

x y Classical NN

Quantum:

x_pqk y Classical NN

Quantum perspective:

We found a dataset that is exponentially difficult to sample from classically. Quantum oracle.

After relabelling

Classical:

x y_new Classical NN

Quantum:

x_pqk y_new Classical NN

Classical perspective:

You changed the labels.

The artificial advantage is very hard to beat

HLRS

100% rigging

n_qubits = 10 num runs = 10

- Results show a lot of variance between runs but overall trends remain same.
- Full relabelling is very hard to beat even use more sophisticated classical model.

Reduce the data rigging and classical wins

20% rigging

n_qubits = 10 num runs = 10

 Flip some of the labels back and advantage disappears. No straightforward relationship for a "partial quantum advantage".

Data rigging effects

HLRIS

- Mainly seems to degrade classical performance rather than improve quantum performance.
- Quantum also has the advantage that it is already fed the PQK features.

Conclusion

HLRS

- Can get a mild quantum advantage with kernel methods.
- Relabelling to study quantum advantage rigs the game rather than finding a better learning method.

Future work

- Use of kernel methods instead of PQK circuits.
- Larger scale simulations. N_TRAIN:int =100 is rather small.

Vielen Dank!

HLRIS

