Can quantum machine learning really outperform
classical models on real-world datasets?
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Background




As a research community are we all cherry picking?

* Certainly many QML studies claim a quantum advantage.
Yet it can be hard to achieve in practice.
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Classical ML is hard to beat

* Pennylane meta-study was disappointing for QML
proponents.

* Reproduced representative assortment of QML
models from literature.

« overall, out-of-the-box classical machine
learning models outperform the quantum
classifiers...

* removing entanglement from a quantum model
often results in as good or better performance,
suggesting that “quantumness” may not be the
crucial ingredient.”

testing 12 quantum & 6 tasks generating 160 datasets
3 classical models for binary classification

- |
hyperparameter optimisation simulating circuits

with >200,000 models trained up to 18 qubits

software package available at
https://github.com/XanaduAl/qml-benchmarks
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“Quantum Data“

* Try to explore more broadly than swapping
classical models for quantum equivalents.
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Power of data in qguantum machine learning T

Paper Ideas

]2
- Classically hard problems can still be competitive with K(z,2") = eXP(‘ szgf | )
quantum models when one considers the affect of the
available data.

* Projected Quantum Kernel (PQK) can provide a small
advantage. k9 (zi, z;) = |(mala;) ).

* Methodology for constructing artificial quantum advantages.

Kz, 2;) = exp (—VZ > (Tr(Pp(wz-)k)—'ﬁ(Pp(a:j)k»?),

k Pe{X.,Y,Z}

Source:
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Projected Quantum Kernel/Quantum Shadow H L

PQK Intuition “Best of both worlds*:

* Quantum feature space captures richer
representations.

* Alleviates problems associated with
large Hilbert spaces e.g. all the inner
products vanishing because the space
is too big.
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Source:
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Geometric Difference

« Can construct a quantity geq Which expresses
alignment between two kernel-induced feature
spaces (original dataset and PQK features).

* Embeddings with higher gcq tend to show signs of
quantum model outperforming.

« Can also artificially maximise geq by a relabelling
procedure.

* Tool for screening embeddings.
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Dissecting quantum prediction advantage

\
Geometry test
N
()
constructed
Classical ML predicts similar or Data set exists with potential
better than thie quantum ML quantum advantage
0
Dimension test for Complexity test for
quintum seace specific function/label
(4 \
Enin(:d. Tr(0?%)) < .-\j [Else]
[ I
\/ \/
Classical ML Classical ML Classical ML Likely
can learn can work/fail, can learn & Hard
any UgnN QK likely fails  predict well to learn

Power of data in quantum machine leaming_https:/arxiv.org/pdf/2011.01938



https://arxiv.org/pdf/2011.01938

Partial paper reproduction
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(Small but observed trends remain same for
The larger scale tests which were run)
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Problem setup

Common QML Setup

Classical:
X y Classical NN
Quantum:
X y Quantum NN

Whats changes:
NN

08.10.2025

Setup here

Classical:
X Yy Classical NN

Quantum:
x_pgk vy Classical NN

Whats changes: data
encoding.
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Problem setup H L R|S

def __init_ (self, DATASET DIM):
super(). _init_ ()
self.fcl = torch.nn.Linear(DATASET _DIM, 128)
self.fc2 = torch.nn.Linear(128, 64)

def _init_ (self, N_QUBITS):
super(). _init_ ()
self.fcl = torch.nn.Linear(3*N_QUBITS, 128)
self.fc2 = torch.nn.Linear(128, 64)

self.fc3 = torch.nn.Linear(64, 16)
self.fc4 = torch.nn.Linear(16, 2)
self.relu = torch.nn.RelLU()
self.dataset_dim = DATASET _DIM

self.fc3 = torch.nn.Linear(64, 16)
self.fc4 = torch.nn.Linear(16, 2)
self.relu = torch.nn.ReLU()
self.n_qubits = N_QUBITS

08.10.2025 12



Partial reproduction of power of data paper

TensorFlow tutorial
from Google uses PQK
circuits rather than full

kernels. hitps:/

www.tensorflow.org/quantum/
tutorials/quantum_data

We reproduced their
tutorial in PennyLane.

“Quantum advantage*
is artificially
constructed.
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Quantum Advantage is hard to find

(b)

* Hard to get a real quantum £ 025 [ Dataset (Q, E1)
. -g —e— Q(E1) == PQ(E1)
advantage using quantum > E°% | oy - rae
shadows and pure / So15 | —— Q€ -- PQ(E
classification. , Sono | T TOEEEN e
Regression c "...m*
g 0.05 &
(KRR) as they 2 0o “m’ﬁ-g‘ﬁ.usu;uawv’
used kernels. '
10 20
n (system size)
T 0.25 | Dataset (Q, E3)
-% 0.20
;")015 B\
5| 2T ettt e
5 0.10 /‘ /’ e
Can’t reproduce 2 0,05, | 4l
*
for standard Mf.&
classification 10 20
n (system size)
Source:

08.10.2025

—~ 0.25

0.20

o o
— -—
o (6)]

Prediction error (regression
©
(=
(&)

o
o
o

o o o
N BN (o]

Prediction error (classification)

o
o

Power of data in quantum machine leaming_https://arxiv.oro/pdf/2011.01938

I Dataset (Q, E2)
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Useful vs useless advantage




Useful vs useless advantage

» 1 he recent success... [showing] that quantum computers can sample from
probability distributions that are exponentially difficult to sample from
classically...

If these distributions were to coincide with real-world distributions...”

Pragmatic definition: Performs better
 on a useful dataset.
* On a NISQ device
- At a large problem size.

How useful is proving you can sample XEB circuits better?

Source:
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Relabelling OR rigging the data

Before

Classical:

X Yy Classical NN
Quantum:

X_pgk vy Classical NN

Quantum perspective:
We found a dataset that is exponentially

difficult to sample from classically.
Quantum oracle.

08.10.2025

After relabelling

Classical:
X y_hew Classical NN
Quantum:
X_pgk y_new Classical NN

Classical perspective:

You changed the labels. {




The artificial advantage is very hard to beat H L R |S
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Reduce the data rigging and classical wins

* Flip some of the labels
back and advantage
disappears. No
straightforward
relationship for a ,partial
quantum advantage®.

08.10.2025

Loss

14 A

12 4

10 A

20% rigging

Loss Curves

=== C Train Loss
—— C Val Loss
=== Q Train Loss
—— Q Val Loss

100 A

80

Accuracy (%)
~
o

o))
o

H L R | S

n_qubits = 10
num_runs =10

Accuracy Curves

=== C Train Acc
—— C Val Acc
=== Q Train Acc
—— Q Val Acc

90 A

______
—_——
,,,,,
-
P

2.5 5.0

10.0 12.5 15.0 17.5

20.0
Epochs

19



Data rigging effects H

Accuracy vs Relabel Ratio (n_qubits = 10)
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Conclusion

* (Can get a mild quantum advantage with kernel methods.

* Relabelling to study quantum advantage rigs the game rather than
finding a better learning method.

Future work

Use of kernel methods instead of PQK circuits.

Larger scale simulations. N_TRAIN:int =100 is rather small.

08.10.2025
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Vielen Dank!




Accuracy vs Number of Qubits (Relabel Ratio = 0.0) Accuracy vs Number of Qubits (Relabel Ratio = 1.0)
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