

About Quandela - We are focused in delivering cutting-edge solutions

→ We build full-stack Quantum Computers

2017

year of incorporation.

1st quantum computing startup in France

35 years

history of state-ofthe art research 2018

first commercialized quantum device

140+

people

50+

people with PhD

55

research scientists

>40

patents & scientific articles

>30,000

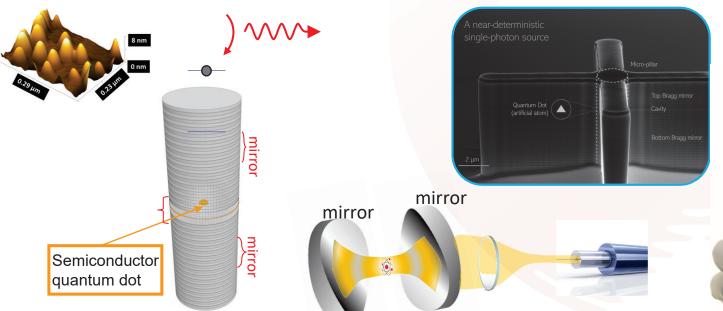
citations for the lead scientists

2

Production facilities

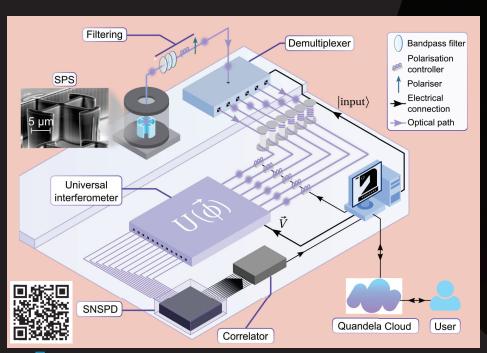
4

main locations worldwide



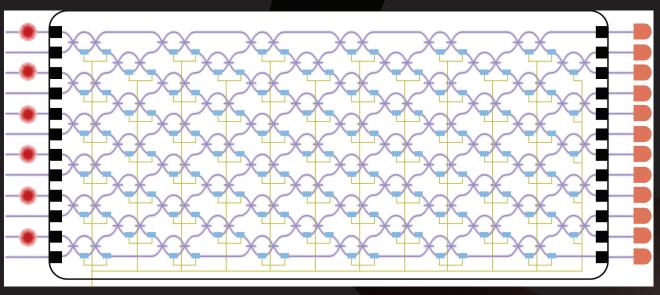
Anatomy of a photonic quantum computer

Turning Light into Qubits


Quandela Quantum Dots

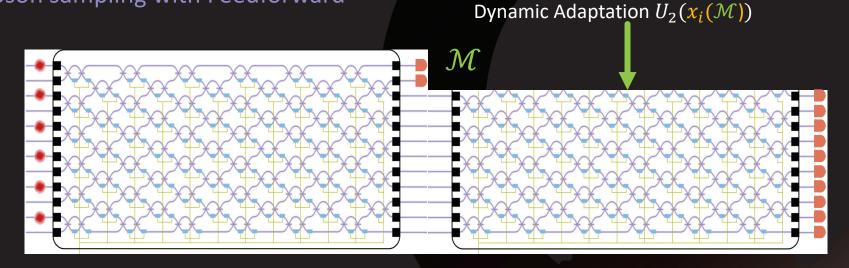

- Single photons are the building blocks of our quantum computer
- Now being fabricated in our semiconductor pilot line

Ascella - the first photonic quantum processor


available in the Quandela cloud

Starting with Boson Sampler

Generic interferometer representing a unitary transformation $U(\mathbf{x}_i)$


Jutput photon distribution

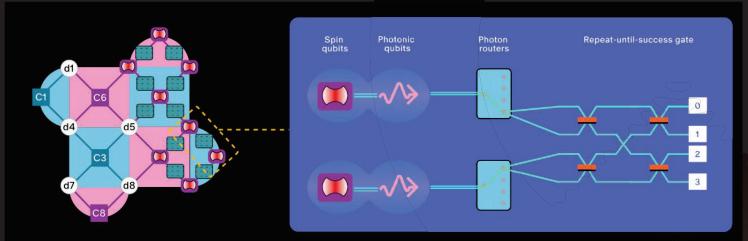
Starting with Boson Sampler

Time necessary to perform/simulate 1000 samples on n photons:


n	Number of operations per sample	High Performance Laptop	Jean Zay HPC #274 worldwide	1GHz QPU with 80% transmission	1GHz QPU with 90% transmission
4	64	milliseconds	milliseconds	milliseconds	milliseconds
10	10240	milliseconds	milliseconds	milliseconds	milliseconds
20	21M	seconds	milliseconds	milliseconds	milliseconds
30	32B	hour	1 s	milliseconds	milliseconds
48	3.10 ¹⁵	4 days	100s	milliseconds	milliseconds
80	10 ²⁶	-	95 years	1 hour	1 second

Boson sampling with Feedforward

Provably harder to simulate


Generalized Entangled Boson Sampler

Provably even harder to simulate

Spin Optical Quantum Computing

→ Hybrid approach using strengths of both photons and spin qubits

Universal Quantum Computing Scheme

r privileged information and may be legally protected from disclosure. COPYRIGHT - Any reproduction on the images contained in this processor without the authorities of authorities are probable to the contained of the contained in this properties.

From NISQ to Quantum Advantage Today's Quantum Opportunity

- "If it's simulable, it has no utility."
- "Noise kills any chance of advantage."
- "Quantum is too slow to compete with GPUs."

NISQ

Small number of physical qubits
Noisy system
Short-time
decoherence

UTILITY

Identifying useful applications outperforming brute force

FAULT TOLERANT

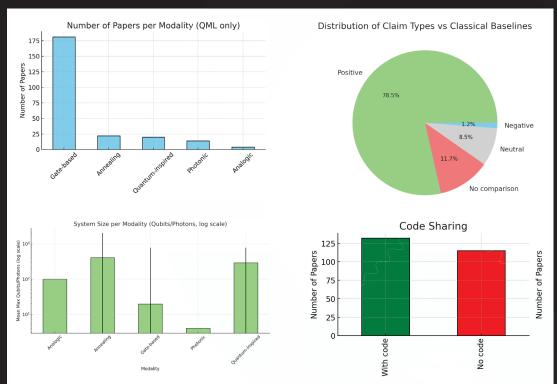
Large number of logical qubits
Error correction scheme

PROOF OF CONCEPT

USEFUL APPLICATIONS

ENERGETIC ADVANTAGE

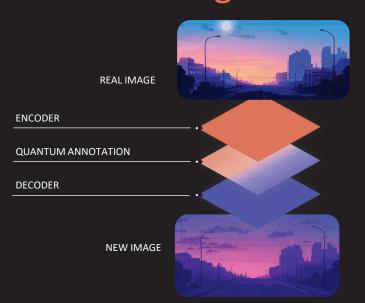
QUANTUM ADVANTAGE


First Generation of Quandela online computers

Intermediate computers

SPOQC Architecture

QML Landscape – over 10000 published papers


Positive Claims

- « Better performance »
- Comparable performance with better data/parameters budget.
- Qualitative Improvement: faster convergence, or qualitative benefits (e.g., interpretability).
- Robustness / stability: Claims of more stable training, smoother learning curves, or improved resilience to noise.

Many claims, little reproducibility, hard to compare.

Proving the Value of Quantum ML – Airbus & BMW

2024 Challenge

Quantum transformation: no need for model training. It only requires source image annotation

Integration of Boson Sampling primitive improved translation and reduced hallucinations.

MERLIN, ROADMAP AND CONCLUSION

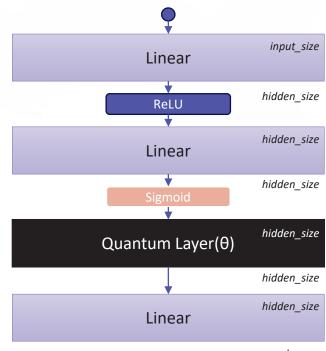
MerLin — our first step toward ML frameworks for hybrid AI+Quantum. Photonic focus, open design

https://merlinguantum.ai

1. Start Anywhere – Simulator First

- Develop and test quantum-enhanced ML models without hardware dependency
- Run everything locally or in the cloud
- Focus on cross-modality paper reproduction

2. Train at Scale – GPU Acceleration on HPC

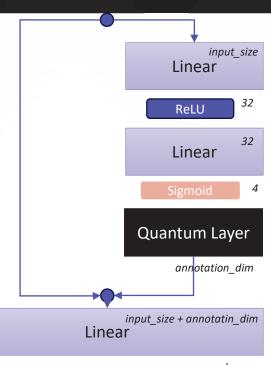

- Train hybrid quantum-classical models efficiently on GPUs
- Use familiar PyTorch APIs

3. Deploy on Hardware – QPU Ready

- Fine-tune and execute on Quandela's photonic QPUs
- Framework evolves with new features (feedforward, entangled sources, SPOQC)

Example Hybrid Models A hybrid classifier

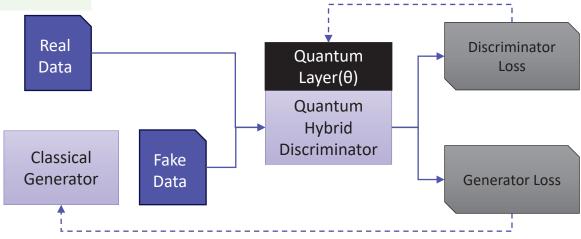
```
def create_quantum_classifier(input_size=10, hidden_size=16, num_classes=2):
   # Create a quantum circuit
   n_{modes} = 4
   circuit = pcvl.Circuit(n_modes)
   wl = pcvl.GenericInterferometer(n_modes, lambda i: pcvl.BS() // pcvl.PS(pcvl.P(f"theta{i}")))
   circuit.add(0, wl, merge=True)
   # Create the model with a quantum layer in the middle
   model = nn.Sequential(
       nn.Linear(input_size, hidden_size),
       nn.ReLU(),
       nn.Linear(hidden_size, 2), # Compress to 2 features for quantum input
       nn.Sigmoid(), # Scale to [0, 1] range
       OuantumLaver(
           input size=2.
           output size=hidden size,
           circuit=circuit,
           trainable_parameters=["theta"].
           input_parameters=["x"],
           input_state=[1, 0, 1, 0], # 2 photons in 4 modes,
           output_mapping_strategy=OutputMappingStrategy.LINEAR
       ),
       nn.Linear(hidden_size, num_classes)
   return model
```



Example Hybrid Models Quantum Annotation in a classical classifier

```
# Initial feature compression
self.feature_compressor = nn.Sequential(
   nn.Linear(input_dim, 32),
   nn.ReLU(),
   nn.Linear(32, 4),
   nn.Sigmoid() # Scale to [0, 1] for quantum input
# Quantum annotation layer
self.quantum_annotator = QuantumLayer(
   input_size=4,
   output_size=annotation_dim,
   circuit=circuit,
   input_parameters=["x"],
   input_state=input_state,
   output_mapping_strategy=OutputMappingStrategy.LINEAR
# Original path - processes raw input
self.original_path = nn.Sequential(
   nn.Linear(input_dim + annotation_dim, 64),
   nn.ReLU(),
   nn.Linear(64, num_classes)
```


num_classes

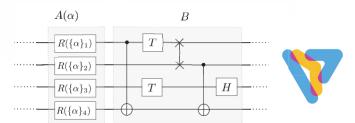

22

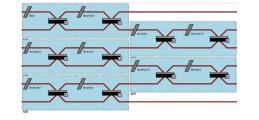
Example Hybrid Models GAN with a Quantum Discriminator

```
class QuantumGAN:
    def __init__(self, latent_dim=100, img_dim=28*28):
        self.latent_dim = latent_dim
        self.generator = ClassicalGenerator(latent_dim, img_dim)
        self.discriminator = QuantumDiscriminator(img_dim)

# Setup optimizers

self.g_optimizer = torch.optim.Adam(self.generator.parameters(), lr=0.0002)
        self.d_optimizer = torch.optim.Adam(self.discriminator.parameters(), lr=0.0002)
        self.criterion = nn.BCELoss()
```



23


Matter qubits

Photonic qubits

Example Hybrid Models. With Cross-Platform Quantum Layers

input size Linear hidden size ReLU Gate-Based Quantum Linear Quantum Bridge from Hilbert to Fock space Photonic Quantum Layer(θ) hidden size hidden size Linear

num_classes

Example of Reproduced Papers

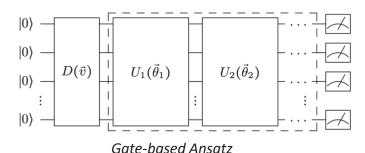
Quantum Self-Supervised Learning

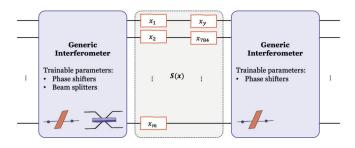
B. Jaderberg, ¹, *L. W. Anderson, ¹, *W. Xie, ² S. Albanie, ³ M. Kiffner, ¹, ⁴ and D. Jaksch ¹, ⁴, ⁵

¹Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

²Visual Geometry Group, Department of Engineering Science, University of Oxford

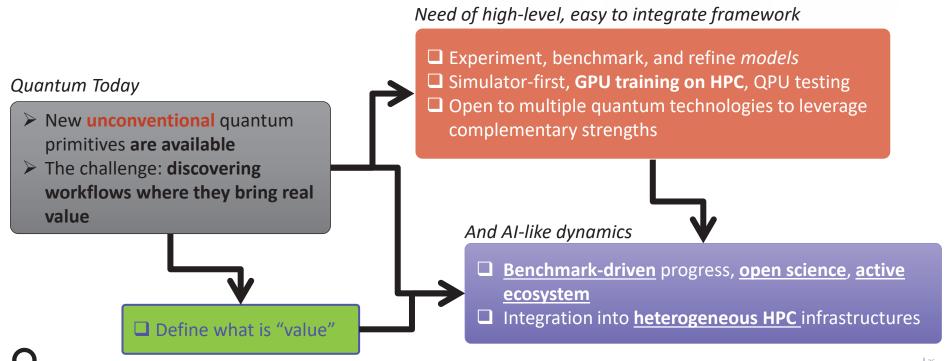
Visual Geometry Group, Department of Engineering Science, University of Oxford


3 Department of Engineering, University of Cambridge


Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore, 11

⁴Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

⁵Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany



Photonic Ansatz

https://github.com/merlinquantum/reproduced_papers/tree/main/qSSL

Quantum + AI + HPC: Unlocking the Next Steps

Q

26

QUANDELA

- https://cloud.quandela.com
- https://merlinquantum.ai

Thank you!