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Motivation

• Quantum Machine Learning (QML) has shown promise, but results are often fragmented and task-specific.

• Hybrid quantum–classical approaches may balance expressivity and practicality by using Quantum 

Computing principles to access high-dimensional Hilbert spaces for feature extraction.

• Previous research mainly emphasizes theoretical potential, but few evaluate end-to-end performance under 

realistic constraints including noise, dataset size, training time.

The Need for Benchmarking
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Introduction
• This work systematically benchmarks classical vs hybrid quantum–classical models across classification 

and  regression tasks, evaluating their performance on accuracy, convergence, and computational cost.

• Parametrized quantum circuits combined with classical optimizers form hybrid QML architectures, 

which can leverage quantum expressivity and classical robustness.

Data 
Extraction

Data Cleaning ML Models

Parameter Optimization

Data 
Silos

ML Flow



5Quantum Effects 2025 | Classical vs Quantum Machine Learning: Benchmarking Hybrid Architectures for Classification, Regression, and Generative Modelling | October 07-08 2025

Vision in QML

QML Approaches Tested 

Quantum Convolutional 
Neural Networks (QCNNs)

Variational Quantum 
Circuits (VQCs)

Quantum Neural 
Networks (QNNs)

• Quantum Machine Learning (QML) combines quantum computing principles with machine learning 

techniques.

• The aim is to explore whether quantum circuits can provide richer data representations or more efficient 

training than classical methods.
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Quantum-Enhanced CNN: Introduction
Why Benchmark QCNNs vs CNNs?

• QCNNs mimic CNN’s structure but exploit superposition & entanglement to represent features more compactly.

• Potential advantages include improved generalization, fewer parameters, and robustness to noise in limited data regimes.

• Goals:

1. To compare training efficiency and scalability under realistic noise and dataset constraints.

2.    Explore hybrid QCNN architectures: quantum layers for feature extraction and classical optimizers.
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Methodology
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Results
MNIST Digit Dataset Brain Tumor Classification

Synthetically Generated 

Defect Dataset

10 classes (0-9)
Around 7000 images per class 

- 4 classes (glioma, meningioma, 
pituitary, no tumor) 
- Around 1300 images per class

- 3 classes: Scratch, Pit, Non-defect
- 600 images per classes

Overall 
Accuracy

Precision Recall F1-
score

QCNN 0.830 0.834 0.830 0.832

CNN 0.782 0.849 0.782 0.744

Overall 
Accuracy

Precision Recall F1-
score

QCNN 0.98 0.98 0.98 0.98

CNN 0.800 0.850 0.800 0.760

Overall 
Accuracy

Precision Compute 
Time

QCNN 0.730 0.673 16 min

CNN 0.810 0.821 55 min
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QUANTUM NEURAL NETWORK

• What are QNNs?

A Quantum Neural Network (QNN) is a machine learning 

model that uses the principles of quantum mechanics, 

such as superposition and entanglement, to process data 

in ways that classical neural networks cannot.

• How it works?

QNNs are useful for solving complex problems in areas 

like optimization, pattern recognition, quantum 

chemistry, and medical data analysis, where classical 

models face scalability limits.

QNNs USED CASES

Cybersecurity

Material 
Defect 

Recognition
Healthcare 
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ARCHITECTURE OF QNN

Input Encoding: 

Classical data is 
transformed into 
quantum states 

using rotation gates 
(e.g., RX).

Parameterized & Entanglement Layers: Learnable 
quantum gates (e.g., RY) with entanglement 
capture relationships between qubits, acting like 
trainable weights.

Measurement:
The quantum 
state is 
measured, 
producing 
classical outputs 
(0s and 1s).

Optimizer: A classical 
optimizer adjusts the 
parameters of the 
quantum gates to improve 
performance.
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Evaluation Metrics

RESULTS

CONCLUSION:QNN model achieved >80% accuracy, proving its potential in real-world ML 
tasks. Unlike CNNs, QNNs can leverage quantum parallelism, offering future advantages in 
speed, scalability, and solving problems beyond classical limits.



12Quantum Effects 2025 | Classical vs Quantum Machine Learning: Benchmarking Hybrid Architectures for Classification, Regression, and Generative Modelling | October 07-08 2025

How VQC Works

✓ A VQC is a hybrid 

quantum-classical 

model for supervised 

classification.

✓ VQC is like a regular 

classifier but uses a 

quantum circuit to 

find patterns.
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VQC vs SVM on 2 Use Cases in the Automotive domain:
Dataset A: CAN Bus Intrusion Detection (Linearly Separable)

➢ The Controller Area Network (CAN) bus enables efficient ECU 

communication but lacks security. Thus, vehicle intrusion detection

systems require high accuracy, as limited attack signatures and false

positives could endanger driver safety.

➢ This dataset captures Controller Area Network (CAN) bus traffic 

from a real vehicle, simulating both normal driving scenarios and

Denial of Service cyberattacks.

Dataset B: Engine Fault Detection (Non Linearly Separable)

➢ This dataset is designed for the purpose of detecting and classifying engine faults. 

➢ It contains data representing sensor readings collected during various operating 

conditions of an engine, including normal, minor fault, and critical fault states.
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Dataset A: SVM vs VQC on Linear Data

• Linear SVM achieves perfect 
accuracy, proving best for linearly 
separable data.

• VQC performs well but 
misclassifies, highlighting current 
quantum model limitations.

•  VQC offers quantum advantage 
potential but is currently limited by 
noise, circuit depth, and 
optimization instability, whereas 
SVM provides stable and reliable 
performance.



15Quantum Effects 2025 | Classical vs Quantum Machine Learning: Benchmarking Hybrid Architectures for Classification, Regression, and Generative Modelling | October 07-08 2025

Dataset B: VQC vs SVM on Non Linear Data

• VQC slightly surpasses Kernel SVM in overall 
accuracy, showing strong promise.

• Quantum circuits capture nonlinear structure 
effectively, despite modest recall trade-offs.

• Results highlight VQC’s potential as quantum 
hardware and optimizers mature.
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Results and Discussion

Results & Insights

Faster development cycles.

Improved generalization & deployment.

Alignment with industry needs (AI + Quantum integration).

Approach Key Results Conclusion

CNN vs QCNN

CNN → Higher training time, better for complex 

datasets due to adaptability

QCNN → Faster training, More efficient on simple 

datasets

QCNNs need deeper circuits and more qubits to 

handle complex datasets, adaptable quantum circuits 

would improve performance on varying datasets

VQC vs SVM

VQC →Not yet faster than SVM on Linear data, 

but has the potential to outperform on Non-Linear 

Data

SVM → Faster training Strong for Linear data

VQC is still new but shows promise for Non-Linear 

Cases, but is currently limited by noise, circuit depth, 

and optimization instability

QNN vs CNN

QNN → Shows faster learning on small and 

complex data

CNN → CNN works best for image dataset

CNNs are reliable for large image datasets, while 

QNNs show faster learning and efficiency on smaller 

or more complex datasets but require scalable circuits 

and hardware maturity.
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Conclusion and Future Outlook

• Foundational insights highlight both current limitations and niche strengths of QML.

• The research demonstrates that hybrid architectures can serve as bridges to practical quantum advantage.

Quantum Computer

Updated Parameters

Program Output

0 1
0

0
1

1
1

1 1
1
1 1

0 0 0

0

Next Steps:

• Extend benchmarking to specialized 

industrial use cases.

• Move towards scalable, deployable hybrid 

systems aligned with industry needs.
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RL vs QRL in Robotic Path Planning
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Comparative Analysis



20Quantum Effects 2025 | DesignQML: A Model-Based Framework for Building and Tuning Quantum Machine Learning Systems Automatically | October 07-08 2025

Thank you for being Patient!

Dr. – Ing Muhammad Saeed
Research Coordinator

muhammad.saeed@arena2036.de

+49 155 60070608

Thanks to the great team of Students:

• Anum Iqbal (Student): Laying down QML Foundations and QGANs
• Zahra Tul Ain (Student): Foundational work in QML and QNNs
• Ateeqa Siddiqui (Student): Foundational work in QML and VQCs
• Kanak Pandit (Student): For Laying down the QRL foundations


	Default Section
	Slide 1: Classical vs Quantum Machine Learning: Benchmarking Hybrid Architectures for Classification, Regression, and Generative Modelling
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Introduction
	Slide 5: Vision in QML
	Slide 6: Quantum-Enhanced CNN: Introduction
	Slide 7: Methodology
	Slide 8: Results
	Slide 9: QUANTUM NEURAL NETWORK
	Slide 10: ARCHITECTURE OF QNN
	Slide 11
	Slide 12: How VQC Works
	Slide 13: VQC vs SVM on 2 Use Cases in the Automotive domain:
	Slide 14
	Slide 15
	Slide 16: Results and Discussion
	Slide 17: Conclusion and Future Outlook
	Slide 18: RL vs QRL in Robotic Path Planning
	Slide 19: Comparative Analysis 
	Slide 20: Thank you for being Patient!


